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Introductions

= Dr. Hisham Othman
«  VICE PRESIDENT, TRANSMISSION & REGULATORY

« Areas of expertise include power system dynamics and control, hybrid
microgrids, grid integration of renewables and storage, economic analysis

« PhD, Electrical Engineering, University of Illinois, Urbana

« Over 30 years of technical and managerial experience in the electric power
industry

= Dr. Salman Nazir
« SENIOR ENGINEER, Advisory Services
« PhD from the University of Michigan, Ann Arbor

+ Areas of interest include DERs, demand response, electricity markets, and
advanced analytics and algorithms for integrating DERs into power systems.

QUANTA
TECHNOLOGY Copyright © 2020

)



Motivation

= A robust response from utilities and corporations to climate change culminated in NetZero carbon
reduction goals to reach 100% between 2030 and 2050.

= Integrated resource planning (IRP) processes and tools have served the industry well over the past
30 years. However, they are increasingly challenged:
 Increased uncertainties in load development, electrification, technology, and grid development.
- Reliability concerns of high penetration of inverter-based resources (IBRs) not modeled.
- Dependance of resource development on availability of T&D hosting capacities, not co-optimized.
- Resilience requirements associated with intermittent resources and grid vulnerabilities not modeled.
- Energy storage capacity (i.e., hours) are pre-selected and not optimized.
- Energy storage value is often restricted energy balancing, and the full stack of benefits not exploited.
= Probabilistic IRP (pIRP) project between Quanta Technology and Sandia has a goal of addressing

these challenges and creating a tool that can be accessed by researchers and practitioners through
Sandia’s QUEST platform.
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Carbon Reduction Plans (NetZero)
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= NetZero decarbonization goals set at most major utilities and corporations over next 10-30 years
= This is prompting a profound change in the energy resource mix towards inverter-based resources (IBRs) in the form

of solar, wind, and energy storage, in addition to clean dispatchable sources (e.g., hydrogen).
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Traditional Probabilistic IRP - Study Process
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Policy Resource Study Resource Uncertainties & Metrics
® Drivers Strategy Scenarios Optimization Sensitivities (costs, Benefits,
¢ ®°0 ¢ Risks)
® o

Biz As Usual Technology Cost
In-State Import Prices
Supply/Demand Fuel Prices

25 yr Cost NPV
10 yr Rev Req NPV
Resilience Risk

GHG Targets
Electrification
Coal Retirement

DG Fuel Security
Mini/Micro Grids DSM Level

Regional Load Growth
Integration RPS Increase

GHG Risk
Investment Timing
Flexibility

Price Stability
Reliability
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Capacity

e LOLE
e LCRs
e Reserves

Probabilistic IRP Formulation

Energy
Balancing

e Load
Forecast

e Time Profiles

)
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Uncertainties

Capacity Expansion Portfolios &
Performance Statistics

Sandia
National
Laboratories

T&D Grid

e Zonal

e T-Hosting
e D-Hosting
e Expansion

IBRs

e Penetration
e Ramp Rates
* FFR needs
* PFR needs
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Objectives:

Affordable
Clean
Resilient

Constraints:

Demand by Zone
Resources: Capacity, Asset Life,
Buildout Rates, Total Buildout
Power dispatch:
o Resources
o Tie-lines between Zones
o Energy Storage
o Renewable Production Profiles
o Curtailments
Renewable targets
Emissions
Local Capacity Requirements (LCR)
T&D hosting capacities
Reserves
Ramping Flexibility:1-min and 10-min
Intermittent power penetration limits
Resilience — Supply Interruption
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Role of Energy Storage within an IRP

= Gen Resource: = Model Reliability and Resilience

- Capacity and Reserves Attributes/Metrics of Resources:

Dispatchability

Predictability

Dependability (e.g., Supply Resilience, firmness)
Performance Duration Limits

- Daily energy balance

« Firm and shape solar and wind
profiles

- Fast ramping « Flexibility (e.g., ramping speed, operating range)

« Intermittency (e.g., intra-hr and multi-hr ramping)
Regulating Power

« VAR support

- Fast Frequency Response (FFR) and
Primary Frequency Response (PFR)

- Multi-day resilience | Laid & - Energy Profile (e.g., capacity credit / ELCC)
e A %%y In(.artlal Response
é n i Primary Frequency Response
% ” Minimum Short Circuit Rati
= T&D Grid Resource e I@L} inimum Short Circuit Ratio
s ol  Locational Characteristics (e.g., deliverability, resilience

« Non-Wire T&D Solution (NWS) to grid outages)

Black start and system restoration support
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How deep should the storage reservoir be?

Sub-hour 4-10 hours 2-8 hours hours to Days
(Gen) (Gen) (T&D) (Gen)

e Fast and Flexible e Integrated Resource e Address Grid Security e High Renewable Targets
Response to control Planning Constraints (e.g., NERC (50%+) using low-
Frequency (Capacity, Reserves, TPL Standards) capacity factor resources

¢ Intermittency of VERs Energy) e NWA solutions e Balance Supply and
(e.g., Solar/Wind) e Peaker Plants Demand

Combined e Mitigate Interruption
Storage+Renewable Supply Risks

VER: Variable Energy Resources
NWA: Non-Wire Alternative Solutions

RE: Renewables
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Modeling Time Buckets

TimeBucket] Label |Annua|Hr5!
1 WD-SpringOffPeakDay 737 |
2 WD-SpringPeak 402 i 8760 hours
3 WD-SpringOffPeakNight 269 |
5 WE-SpringOffPeakDay 286 i Spring Summer, Fall Winter
6 WE-SpringPeak 156 |
7 WE-Spring OffPeakNight 182 i
9 WD-SummerOffPeakDay 726
10 WD-SummerPeak 396 i WkDy WEnd WkDy WEnd WDy WEnd
11 WD-SummerOffPeakNight 462 i
13 WE-SummerQOffPeakDay 297 i
14 WE-SummerPeak 162 i Day, MNight  Day Night Day, Night
15 WE-SummerOffPeakNight 189
17 WD-FallOffPeakDay 715 i
18 WD-FallPeak 390 i Off-Peak | \Peak Peak
19 WD-FallOffPeakNight 455
51 WE-FallOffPeakDay 275 12345161718 9 JioJ11Ja2) 1314 ] 15116 17]18]19]20 25J26J2728] 29 30] 31]32
22 WE-FallPeak 150 i Default values for seasons:
23 WE-FallOffPeakNight 175 i e e oo
25 WD-WinterOffPeakDay 693 - Fall: 09/22 to 12/20
26 WD-WinterPeak 378 i - Winter: 12/21 to 31/12; 01,/01 to 03/19
27 WD-WinterOffPeakNight 441 i D o 1w and oftpeaichours:
29 WE-WinterOffPeakDay 286 | - Day peak: 16 t0 21
30 WE-WinterPeak 156 i _ ::E:t ;f;ﬁezznT and 22:23.
Ehl WE-WinterOffPeakNight 182 i
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Modeling T&D Hosting Capacity and Grid Expansion - Zonal Model

4| Probabilitic IRP (Integrated Resource Planning) = O X

Tie-Lines (Import/Export)
T- Hosting
D- Hosting Capacity

Available MW
Upgrade MW
Upgrade Cost/MW

Zonal Constraints:
- LCR

Resilience
Load
Uncertainty

Key Parameters View Output
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Modeling Supply Resilience

Storage Capacity Requirement (Hrs) for Solar Supply Resilience

[00]
o

= Objective : Provide backup to resources that can be interrupted

under extreme conditions (e.g., hurricane). 5.
. . . § :%: 50
= How much backup duration is required? depends ... & % 40
. . 'gﬁ% 30
« Interruption season and number of consecutive days 5% d
- Capacity credit of all affected resources (e.g., solar/wind) =10 *
. 0
« Load Profile 0% 10% 20% 30% 40% 50% 60%

Solar Capacity Credit (% of Peak Load)

= Backup size increases with affected resource size, capacity credit, T bdey T aday aday o aday ——Sday
and number of consecutive interruption days:
« Peak load of 1000MW.

« 500MW solar PV with a capacity credit of 100MW (20%), or 10% of
peak load.

o

fZane Resource 1 | Resource 27| Resource 3 | Resource 4 Interruption Days
ComEd |
ComEd

RTO

« 2 consecutive rainy days

« Backup size is 1200MWh (or 12 hours of 100MW capacity). This can
be energy storage or a 100MW generator running on renewable fuel.

WD (00 |~ |00 | B P

- However, if the solar capacity credit is 60% (30% of peak load), the
backup size will increase to 6000MWh (or 20 hours of 300MW
capacity).
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Modeling Grid Resilience

» Protect Critical Load and/or Vulnerable Communities
- Create special zones for critical loads within the T&D grid
- Determine capacity credit curves of renewable resources relative to the hourly profile of critical load

« For resources within special zones:
- Impose a minimum local capacity requirement constraint to ensure closeness of resources to critical load

Impose energy adequacy constraints

Impose supply resilience constraints

Select if resources should be connected to T or D or both

Special

P 6/ Zone
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Modeling Energy Storage

= Within each zone, optimize multiple storage systems, with different energy capacities:
- (e.g., 1h, 2h, 4h, 6h, 12h).

= Model operational constraints:
- daily energy balance constraints: daily charging = daily discharging plus losses

- Energy reservoir constraints

= Model storage value stack:
- capacity benefit curve
 Fast Frequency Response capability

- Ramp Rate capability (1min, 10min)

Y | QUANTA .
(\@)} TECHNOLOGY Copyright © 2020



Roadmap

W 2019 W 2020 ‘ 2021

Conceptual Dev. More Features: Python Porting

MATLAB Prototype Resilience QUEST integration
Uncertainty Usability/Dashboard
Scalability Additional Capability
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25 T T T T T

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 14 1.5

0
095 096 0897 098 099 1 1.01 1.02 103 1.04 105

Normal distribution - Cap Credit
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0
095 0986 097 098 099 1 101 102 103 104 105

Uniform distribution - zonal load

0.5 0.6 0.7 0.8 0.9 1 1.1

Weibull distribution — Profile (W+BESS-E10)
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Uncertainty Sampling - Latin Hypercube

D Category RandomVariables NominalValue StartYear UncertaintyModel
1 Peak Load ComEd 22,497.0000 3 Normal
2 Peak Load DEOK 5,289.0000 1 Uniform
3 Profile DR 1.0000 1 Mormal
4 Fuel Cost Coal 1.3500 1 LogNormal

)5 | Fuel Cost Escalator HFO 0.0300 1 Uniform
6 CapacityCredit USolar 0.3800 1 Mormal
7 | Load Growth Rate DEOK 0.0050 1 Mormal
8 | Load Growth Rate MAAC 0.0050 1 Uniform
9 Profile Wind+BESS-E10 1.0000 1 Weibull

_\10 Fuel Cost Nuclear 5.5000 1 LogNormal

-
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Study C: 50-75% Renewables by 2040
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data_3D4D.mat v

Total Cost is 362 555 MUSD.
LCOE: 37.66 $/MWh

Show MC

Sample Outputs

ComEd EMAAC RTO DEOK MAAC PJM Total

Dispatch

Chart type:
() Stacked Bar

@) Filled Area

Total Cost is 362 555 MUSD.
LCOE: 37.66 $/MWh

[—

Dispatch of Resources in EMAAC

data_3D4D.mat Show MC

ComEd EMAAC RTO DEOK MAAC PIMTotal

Storage Additions in PJM Total

Storage Additions

Chart
®
(O Filled Area

x 1,000MW

ESS-1

(ESS-2) =0

ESS-5

ESS-10

0 2 4 6 8 10 12 14 16
YEARS

data_3D4D.mat Show MC
Total Costis 362 666 MUSD.
LCOE: 37 66 $/MWh

ComEd EMAAC RTO DEOK MAAC PJM Total

Total Installed Capacity
Chart type:
() Stacked Bar

(@) Filled Area

Installed Capacity in PJM Total
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[ IBiomass

I Geothermal
[ usolar
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Time Buckets
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Resilience Impact:

* Storage
capacity
requirement
increased by

17.5%

 LCOE
increased from
45.7 S/MWh
to
approximately

48.9 S/MWh
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100% Renewable IRP: Example

Storage energy capacity

_ _ o Installed Capacity in PJM Total I CE
requirements increase with time: 450 . . . . . . . . . I CT
I CC
400 - I C o
B Nuclear
= Freq Response: 350 - [ IBiomass
[ (FuelCell) = 0
ESS-1hr B Geothermal
. 300 - [ JuSolar
= Capacity & Energy Balance: = [ 1DSolar
ESS-5hr = 250 4| Iwind
S I DR
ESS-10hr S] I EE
= Capacity & Energy: 8 DSolar_____| B (ESS-2) = 0
S+S-5hr 150r USolar | Ess-5
N ESS-10
W+S-10hr 100 + - I Hyd ro
[ Is+s5
[ Iw+s-10
50
0
0 2 4 5] 8 10 12 14 16 18 20
YEARS
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Energy Storage Requirements at Year 20 (Probabilistic IRP)

Probability of Max. Storage Size Requirement

~
o

[e)]
Ul

(o))
o

95%
Confidence

Storage Size (GW)
(Oa] ul
o (0]

I
Ul

40

0 10 20 30 40 50 60 70 80 90 100
Cummulative Probability

= Storage Requirements range between 41-69GW, with a mean of 60GW.
= 90% probability the storage requirements will exceed 50GW; 95% probability will not exceed 62GW.
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Case Study for a Carbon-Neutral Future — Solar, Wind, Storage

Dispatch of Resources in PJM Total
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18 20 0]

10 12 14 16 18 20
YEARS

= To reach carbon-neutral, 165GW peak load (LF 60%)
will require a resource mix that grows from 200GW to
800GW in 20 years at a high total cost of $667B
(LCOE=S77/MWh), and significant grid investments.
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x 1,000MWh?

Adding Solar+Storage to the Resource Mix

[ IBiomass
I FueICell
I Geothermal
[ Usolar
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500 | | © . I
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. =l = a
o .
-500 X : : ' ' ' ' ' ' -50 ™ : ' ' ' : '
0 2 6 8 10 12 14 16 18 2C 0 2 4 6 8 10 12 16 18 20
YEARS YEARS
] : I = To reach carbon-neutral 165GW peak load (LF 60%)
I will require a resource mix that grows from 200GW to
350GW in 20 years at a moderate total cost of $331B
(LCOE = $38/MWh) and small grid investments.
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Adding Renewable Fuel (e.g.,

Dispatch of Resources in PJM Total
3000 T T T T T T T T

Hydrogen) to the Resource Mix
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10 12 14 16 18 20
YEARS

18 (0] 2 4 6 8

= To reach carbon-neutral 165GW peak load (LF 60%)
will require a resource mix that grows from 200GW to
320GW in 20 years at a moderate total cost of $313B
(LCOE = $36/MWh) and small grid investments.
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Thank you!
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guanta-technology.com

Quanta Technology Canada, Ltd.
2900 John Street, Unit 3

Markham, Ontario, L3R 5G3 info@quanta-technology.com

g”"’ 2

-.
5l
)

Quanta Technology

720 East Butterfield Rd., Suite 200
Lombard, IL 60148

Quanta Technology
2300 Clayton Road, Suite 970

Concord, CA 94520 LinkedIn.com/company/quanta-technology

Quanta Technology
905 Calle Amanecer, Suite 200 Quanta Technology, LLC(HQ)

Y ) 4020 Westchase Blvd., Suite 300
San Clemente, CA 92673 N ) Ll -
M e L Raleigh, NC27607
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